
RESEARCH NOTE 

Fundamental sloshing frequencies of 
stratified two-fluid systems in closed 
prismatic tanks 

Y. L. Sinai* 

The solution to the irrotational eigenvalue problem for internal waves in closed 
tanks is simple but not easily accessible. Solutions are given for two geometries 
frequently encountered in industry. It is recommended that acoustic rather than 
structural elements be used in finite-element calculations of complex geometries 
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Surface wave motions of a liquid lying in a vessel of finite 
dimensions have been of interest in a wide range of 
contexts, such as tides and harbours 1'2, response of fluids 
to earthquakes 3, and sloshing of fluids in the fuel tanks of 
road vehicles, ships and aircraft 4. Concomitant resonance 
frequencies are associated with wave patterns the shapes 
of which depend on the vessel geometry, and classical 
theory has long been applied to constant-depth vessels 
with simple cross-sectional areas such as rectangles or 
circles 1"2. More complex geometries have required the 
implementation of numerical codes, usually of the finite- 
element type. 

A more complicated situation which arises in 
nuclear reactors, and probably in numerous other 
situations in industry, concerns the interracial waves in a 
two-fluid system filling a closed tank. For  example, if the 
two fluids exist at different temperatures, oscillations of 
the interface could be of concern in relation to thermal 
stressing of metal components. A literature search 
performed recently on a computerised data bank failed to 
locate any relevant material, although Bauer ~ has very 
recently published calculations of forced oscillations in 
rectangular containers. Surprisingly, the published 
material is confined, in the main, to oceanography and is 
not easily accessible to most engineers. 

Two useful references are Thorpe 5 and Roberts 6. 
Oceanographers have considered a broad class of density 
stratifications, and they use the term 'internal seiche', 
found in lakes and fjords, to describe the discontinuous 
type addressed here. Most of that material deals with a 
free top surface, but Thorpe 5 gives details of both 
experiment and theory with a fixed top surface. Emphasis 
has been placed on small density differences, associated 
with salt concentrations, and two-dimensional motion. 
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In this note, the classical linear approach is applied 
to a two-fluid system filling a closed, prismatic (in the 
vertical sense) tank. The underlying mathematics for 
potential flow is straightforward, and the readers familiar 
with this aspect of fluid dynamics will know that after 
separation of variables the problem will degenerate to a 
dispersion relation coupled to an eigenvalue problem for 
the two-dimensional Helmholz equation. The dispersion 
relation has been quoted previously in the context of 
progressive gravity waves 1'2. Nevertheless, it seems 
worthwhile to record the results for two shapes encounted 
frequently in industry, namely tanks with circular and 
concentric annuli as cross-sections. The two fluids may be 
different species, a liquid and its vapour, or even a single 
fluid sustained at different temperatures, but no account 
has been taken of the interface thickness so the theory will 
only apply to waves with heights which are large on the 
scale of the interface thickness. 

General theory 
Referring to F ig l ,  assumption of irrotational 
disturbances leads to a convenient representation in terms 
of the velocity potential @ such that the fluid velocity ff is 
given by grad~.  The continuity equation for 
incompressible flow in turn implies that: 

V2~=0  (1) 

The free modes are analysed by considering time- 
harmonic motion of radial frequency co, so that: 

¢b(x,y ,z , t  ) = ~ ( x , y , z ) e -  ~" (2) 

viz: 

V2~;, =0=V2~2  (3) 

The boundary conditions at a solid surface are: 

ft. V~ = 0 (4) 

where E is a unit normal to the surface. At the mean 

142 0142-727X/85/020142~93$3.00© 1985 Butterworth 0 Co (Publishers) Ltd Vol 6, No 2, June 1 985 



interface level, combination of the conditions stipulating 
equality of displacement and pressure, ignoring surface 
tension, leads to ~'2" 

co q~l--gH--p)~-z =pco (0 2 P=P2/Pa (5) 

Separating variables: 

~j = 49i(x,y)Gj(z) j = 1,2 (6) 

and one is led to the Helmholz equations: 

V249j + k249j = 0 (7) 

where V 2 is the Laplacian operator in the x y plane, and 
to the classical dispersion relation t'2 for progressive two- 
dimensional waves in a stratified two-fluid system. It is 
convenient to non-dimensionalise lengths with respect to 
a reference length L: 

K = kL Hj = hj/L D 2 = w2L/g (8) 

Then: 

f~2[coth(KHO + p coth(KH2) ] = (1 - p)K (9) 

I n t e r f Q c e  - - - - - - - - - -  

~2 
/ \ 

Fig 1 The configuration. The general theory applies to 
arbitrary cross-sectional shapes 

Sloshing frequencies in closed prismatic tanks 

and 

V~49 +K249 = 0  049=0 (10) 
On 

where all lengths in the Laplacian are now dimensionless. 

Application to circles and annuli 

In cylindrical coordinates, Eq (10) reads: 

1 1 
49rr -~ ;49r qt- ~-49 00 -~- K249 = 0 (1 1) 

where r is understood to be dimensionless. Separating 
variables: 

49 = M(r)N(O) (1 2a) 

Noo + #2N = 0 # integer (1 2b) 

R2MRR+RMR+(R2--p2)M=O R = K r  (12c) 

The two independent solutions of Eq (12c) are s the Bessel 
functions J,(R) and YAR). 

In the case of a circle, only J applies, and if L is 
chosen to be the radius of the circle, the wavenumbers are 
given by: 

J'.(K) =0 (13) 

For  each p there is an infinite set of solutions to Eq (13), 
identified by the pair of symbols #, r/. Fig 2 shows f~ versus 
H1 for a cylinder the height of which equals the radius, ie 
H =  1, for several modes and with p =0.63. 

Turning now to the concentric annulus, defining q 
as :  

q = rz/r 1 (14) 

The solution of Eq (12c) may be written as: 

M=J, , (R)+¢Y. (R)  (15) 

where ~ is a constant. Applying the conditions at R 1 and 
R 2, and choosing L=r~: 

J~, (K)Y;, 01K)-  J~,(qK) Y~,(K)= 0 (1 6a) 

¢= - J~,(K )/ Y;,(K ) (16b) 

Notation 
g Gravitational acceleration 
G Eq (6) 
hj Height of layer j 
/-/j h/L 
H (hi +h2)/L 
i ( -  1) 1/2 
J .  Bessel function of the first kind 
k Wavenumber 
K kL 
L Reference length 
M Eq (1 2a) 
n Sub-mode of pth azimuthal model 
N Eq (12a) 
r. 0, z Cylindrical polar coordinates 
r 1, r 2 Radii of annulus 
R Kr 
t Time 

u Fluid velocity vector 
x, y, z Cartesian coordinates 
Y. Bessel function of the second kind 
q r2/rl 
# Integer identifying an azimuthal mode 

Constant 
pj Density of fluid j 
P P2/Pl 
49 Eq (6) 

Eq (2) 
@ Velocity potential, Eq (2) 
o9 Frequency (rad/s) 
f~ co(L/g) 1/2 

Subscripts 

j 1 o r 2  
1 Fluid below the interface 
2 Fluid above the interface 
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Fig 2 Fundamental frequencies versus interface height for  
the circle, p =0.63, H = 1. The pair (12,n) refers to the n th 
mode of  the azimuthal waves identified by 12 
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Fi9 3 Fundamental frequencies versus interface height for  
the annulus, q = 1.22, H = 0.595, p = 0.63 

As an example, ~/has been chosen to be 1.22, in which case 
the first few eigenvalues are: 

12, q K 

0, 1 1 4 . 3  

0, 2 28.6 
1, 1 0.9 
1, 2 14.3 

Fig 3 gives f~ against H 1 for these modes, with H =0.595 
and p=0.63. The first azimuthal mode (1, 1) possesses 
eigenfrequencies which are much lower than the other 
modes. 

Conclusions 

Linear, irrotational theory has been used for determining 
the resonance frequencies of gravity waves at the interface 
between two fluids filling a prismatic tank. Semi- 
analytical solution have been obtained for tanks 
possessing circles and concentric annuli as cross-sections, 
and non-dimensional frequencies have been presented as 
func:ions of interface height for tanks having specific 
aspect ratios. More complex cross-sectional geometries 
have to be solved numerically by a computer code which 
can determine the eigenvalues for the Helmholz equation 
(Eq (10)), and since acoustic resonances in rigid cavities 
are completely analogous, it is recommended that 
acoustic elements in finite-element codes should be used 
in preference to structural elements. 
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